



# A Venus Rover Capable of Long Life Surface Operations

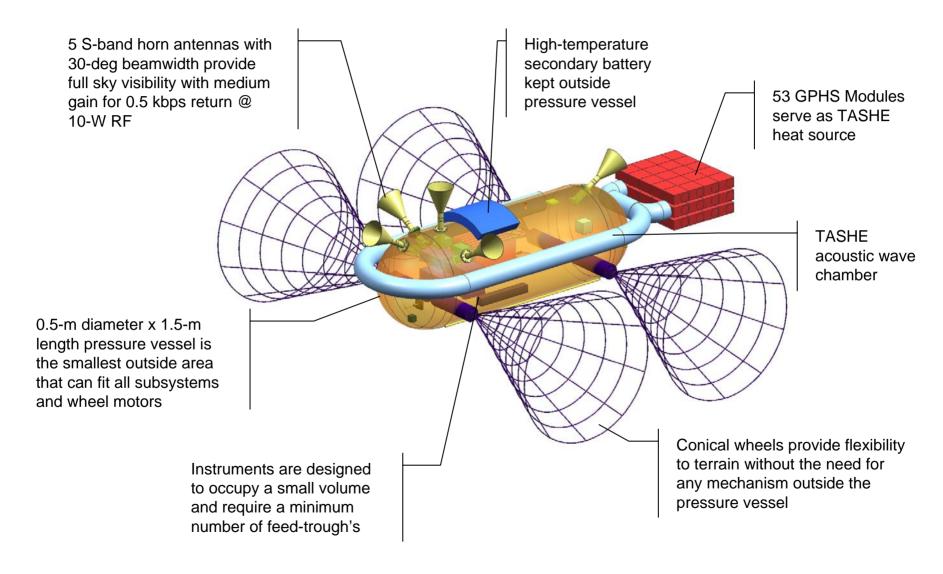
Michael Evans, James H. Shirley, Robert Dean Abelson Jet Propulsion Laboratory, California Institute of Technology

2005 AGU Fall Meeting
December 9, 2005

# **Study Overview**

### **Objectives**

- The goal of this Venus Rover mission study is to examine a long-lived (weeks to months) mission that could meet the science goals of the Solar System Exploration Roadmap and Decadal Survey.
- Examine the feasibility of using an novel thermoacoustic Stirling system (TASHE) to provide electrical power and cooling.


#### **Challenges**

- Hostile Venus environment: 460°C, 90 bar
- Difficult to provide long-life electronics/systems environment (low temp & pressure)
- Difficult to provide long-life electric power

#### Scope

- Short study focused on: feasibility of using TASHE, identifying technology requirements, including sufficient thermal loads consistent with a minimal roving capability
- Many assumptions made regarding mobility system and technology readiness

# **Conceptual Rover Configuration**



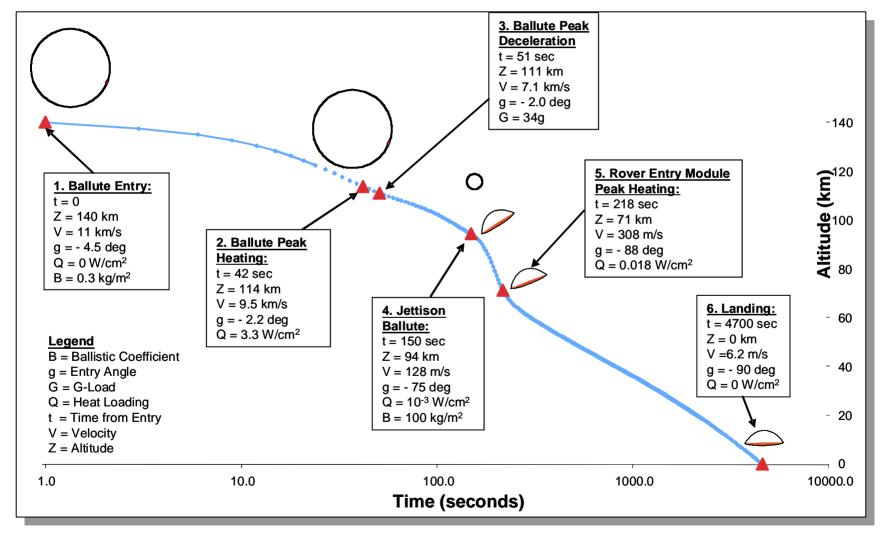
## Science

## **NRC Decadal Survey**

- Specifically mentions a future Venus In-Situ Explorer
- Science Objectives
  - What global mechanisms affect the evolution of volatiles on planetary bodies?
  - Why have the terrestrial planets differed so dramatically in their evolutions?
  - How do the processes that shape the comtemporary character of planetary bodies operate and interact?

### **Science Objectives for This Study**

- Characterize the elemental and mineralogical composition of the surface
- Characterize the atmospheric composition, especially isotope ratios of key species
- Characterize planetary volcanism (activity, emmissions to the atmosphere, composition)
- Characterize surface meteorology
- Characterize surface geology and morphology

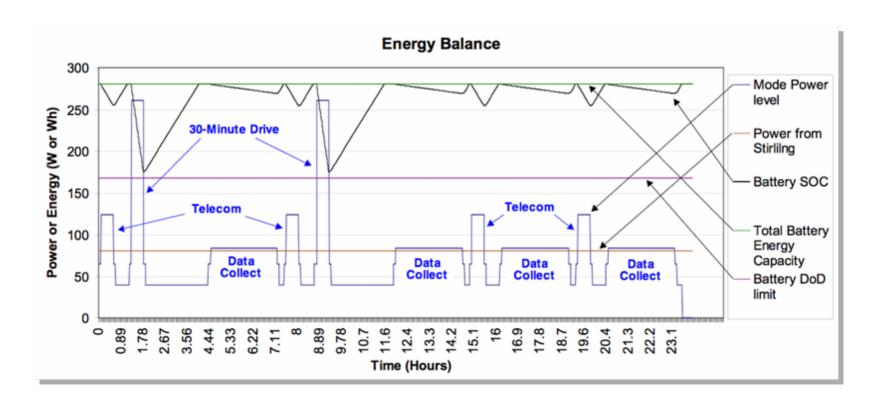

## **Strawman Instruments**

- Candidate instruments chosen to characterize system requirements (mass, power, data rate). Total instrument mass of 23.6 kg (w/o contingency).
- All instruments packaged inside pressure vessel. Raman uses fiber optics port in hull.
- NMS samples atmosphere via tiny inlet port using ambient pressure to fill one of multiple sampling containers.

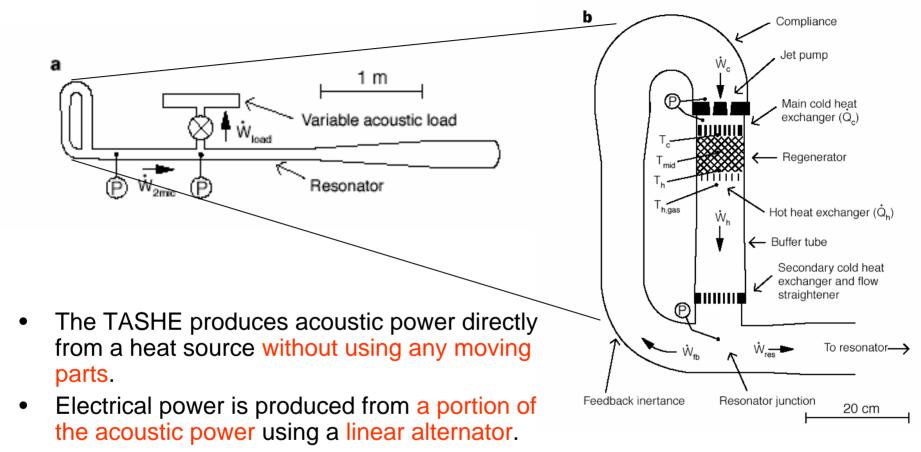
| Instrument                | Function                                | Data Rate<br>(kbps) | Mass<br>(kg) | Power<br>(W) |
|---------------------------|-----------------------------------------|---------------------|--------------|--------------|
| Raman Spectrometer        | Surface composition & minerology        | 1                   | 2.5          | 18           |
| Neutral Mass Spectrometer | Atmospheric composition                 | 5                   | 7            | 8            |
| Navigation Cameras (4)    | Nagivation, Geology                     | 100                 | 10           | 10           |
| IR Sun Sensor             | ~1 micron, Sun location for telecom     | 10                  | 1            | 3            |
| Ground Penetrating Radar  | Subsurface stratification               | 65                  | 1.1          | 5            |
| X-Ray Fluorescence        | Surface elementals via alpha scattering | 2                   | 1            | 0.5          |
| Meteorology Station       | Temperature, pressure, wind speed       | 1                   | 1            | 0.5          |

# **Landing Sequence**

- Earth-Venus-Venus trajectory with direct entry at Venus
- Spherical inflatable ballute (64m diameter) helps reduce entry loads

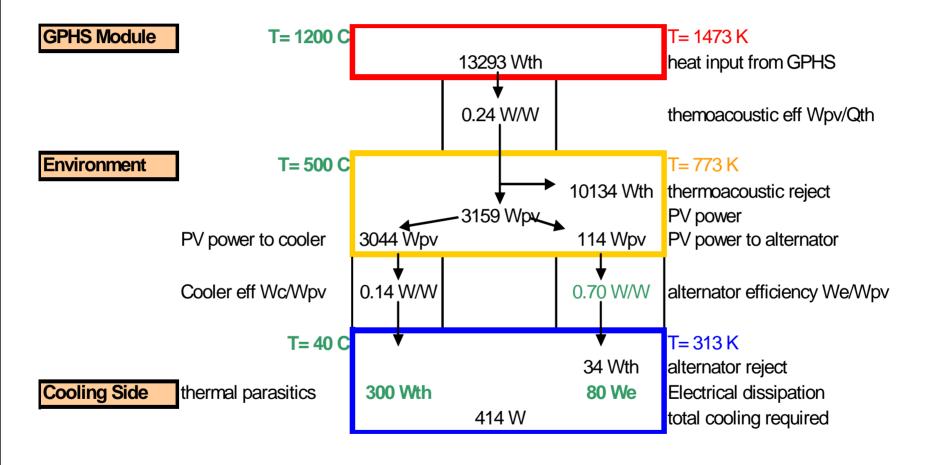



## **Rover Design Features**


- Rover mass estimated at 680 kg (incl. 30% contingency).
- Power would be generated by a Thermal Acoustic Stirling Heat Engine (TASHE) using ~53 GPHS modules as the heat source.
- The Mobility system is assumed to use 4 conical wheels.
  - Each wheel is assumed to be a conical wire frame having a maximum diameter of approximately 80 cm and driven by its own motor.
  - The wheels do not articulate; steering is controlled by skid steering as on a tracked vehicle.
- Direct-to-Earth telecom
  - 500 bps downlink at 0.6 AU max range to a 70m DSN station
  - S-Band used to minimize atmospheric attenuation (1 dB loss vs 10 dB @ X-band)
- High temperature batteries (Na-NiCl<sub>2</sub>) are mounted on the exterior.
- The Rover has no externally deployed parts. Only the wheels move.
- Rover surface area minimized and electronics kept in vacuum to minimize thermal load from Venus atmosphere.

# **Surface Operations**

- Nominal operations scenario of 24 hour cycles
- Roving draws the most power (261 W)
- Four 60-minute telecom sessions, each follows stationary data collection periods
- 30 min drives include 15 stops for nav images and GPR operation
- Compositional science instruments operate when stationary
- 6.9 Mbits returned per 24 hours




## Thermoacoustic Stirling Heat Engine (TASHE)



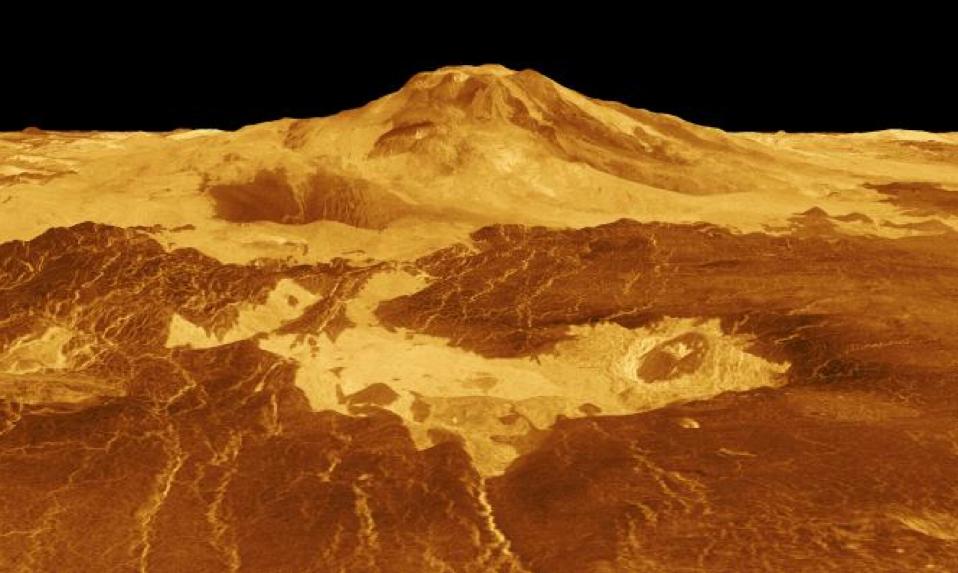
- A Pulse Tube Refrigerator (PTR) is directly coupled to the TASHE to convert the acoustic power into thermal power, providing refrigeration with no moving mechanical parts.
- Current functioning prototypes (NGST & LANL) are not designed to function on Venus.

## **Power and Cooling Calculations**



## Thermal Design

- The thermal control system must reject thermal energy from the atmosphere on the hull and penetrations (300 Wth total)
  - The thermal load through the hull is about 133 watts.
  - There are 4 drive motors with a total thermal load is 130 watts (4 x 32.5 wattts).
  - There are 6 optical penetrations (0.5 cm in diameter) with a total load of 3 watts.
  - There is a Neutral Mass Spectrometer with a thermal load of 2 watts.
  - There are 8 wire penetrations (assumes Manganin wire) with a total thermal load of 2 watts.
  - There are 5 wave-guide penetrations with a total thermal load of 30 watts.
- Thermal control design features
  - Maintain a vacuum on the interior of the Rover (10-6 torr) to minimize convection. Getter material used to maintain vacuum in the pressure vessel.
  - High temperature MLI on the rover interior (Gold plated Titanium with metal salt crystals as separators).
  - Cooling is performed by the PTR integrated with the TASHE .
  - Drive Motors are isolated from the Venus temperature environment with conduction isolation. Will be exposed to the Venus pressure (92 Bar).
  - The cooling system must absorb the parasitic thermal energy.


# Venus Rover Summary

- A long-lived Venus explorer is a high priority of the Solar System Exploration Roadmap.
- Increasing the mission lifetime and including mobility opens up numerous new scientific options. Scientists can now trade, e.g., between:
  - Stationary lander with full instrument suite versus Rover with limited instrument suite.
  - Increased measurement capabilities versus lifetime (for example, sample acquisition might limit lifetime through thermal problems).

 A TASHE system (or other advanced RPS concept) capable of providing electrical power and thermal cooling in a Venus environment could be enabling for a long duration surface mission.





